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Generalised variational derivatives in field theory 

F Guil Guerrero and L Martinez Alonso 
Departamento de MBtodos Matemiticos de la Fisica, Facultad de Ciencias Fisicas, 
Universidad Complutense, Madrid-3, Spain 

Received 24 July 1978, in final form 9 May 1979 

Abstract. A new class of variational derivatives is used to deduce several algebraic 
properties of Lie-Backlund operators in the context of the variational formalism. Appli- 
cations to the conservation theorems in the Lagrangian and the Hamiltonian formalisms are 
given. 

1. Introduction 

A new class of variational derivatives has been recently introduced (Galindo and 
Martinez Alonso 1978) which turns out to be very appropriate in studying the kernel 
and the range of the usual variational derivative. In this paper we use these generalised 
variational derivatives as a tool to investigate the connection between invariance groups 
and conservation laws in the Lagrangian and Hamiltonian formalisms. 

Our analysis is based on several algebraic properties of the generalised variational 
derivatives in the context of the theory of groups of Lie-Backlund tangent trans- 
formations. These properties enable us to express the Lie-Backlund operators in a 
convenient form in order to deal with them in the variational formalism. In particular, a 
useful identity for the commutator of Lie-Backlund operators with the usual variational 
derivative is obtained. We show in this paper that this identity plays an important role 
in the derivations of conservation theorems in field theory. 

It is well known that invariance properties of systems of partial differential equa- 
tions may be studied in terms of the theory of Lie-Backlund operators (Ibragimov and 
Anderson 1976, Kumei 1975, 1977, 1978). However there are no general rules for 
deriving conservation laws from the existence of invariance groups for a given system of 
partial differential equations. Notwithstanding, in Lagrangian formalism Noether’s 
theorem gives a way of doing this for a certain class of invariance groups. In our opinion 
the origin of this particular property of Lagrangian systems has not been conveniently 
explained. In this paper we show that Noether’s theorem is a consequence of the 
algebraic relations between Lie-Backlund operators and variational derivatives. 
Moreover we discuss the advantages of our approach to Noether’s result with respect to 
the conventional one based on the invariance properties of the action functional. On 
the other hand, we also investigate the applications of the generalised variational 
derivatives in the Hamiltonian formalism. Thus we find that they appear in the formula 
governing the time evolution of density functions, and we use them to deduce the 
commutation relations between variational derivatives and canonical operators. As a 
consequence we obtain a simple proof of a conservation theorem in the Hamiltonian 
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formalism due to Kumei (1978). We emphasise that our derivation of Kumei's result 
avoids the use of functionals and uses only algebraic properties of variational deriva- 
tives and canonical operators in the context of density functions. 

2. Generalised variational derivatives and Lie-Backlund operators 

Let ur(r  = 1, . . . , , m )  be m real fields dependingon n coordinatesxi(i = 1, . . . , n ) .  For 
each ordered set a = (a1, . . . , an) of n non-negative integers, we denote 

Given a = (a l ,  . . . , a,) and p = (PI, .  . . , P,)  we shall write P s a  if Pi s a i  for all 
i = 1 , .  . . , n. In this case we define 

We shall consider functions F = F[x, U], which depend on a finite number of variables 
belonging to the set (xi, uL)(i = 1, . . . , n ;  r = 1, . . . , m ;  la1 0) .  From now on we shall 
limit ourselves to functions F E C", and we will denote by 9 the set of all such F's. The 
summation rule over repeated indices will be assumed for the r index which specifies the 
field components. 

We define the variational derivative with respect to the variable U; as the following 
operator on 9: 

where D P  denotes the total differentiation operator 

In particular, 6/Su coincides with the usual variational derivative 

Given functions p r  = ,u'[x, U ]  and F = F[x, U ]  in g, we have the identity (Galindo 
and Martinez Alonso 1978) 

As a consequence, it follows that every FE 9 admits the expansion 

F[x, u ] = F [ ~ , O ] + ~ D " / ~ y d u ' ,  6F 
a 6V Oi 

y being the curve y ( t )  = [x, tu] ( t  E [0, 11). This expansion has been used by Galindo and 
Martinez Alonso to prove rigorously the important property 

ker S/Su = ran D (6) 
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where ker S/Su ={FE 9: GF/Su' = 0 V r }  and ran D is the linear space of all the 
elements of 9 which are of the form 2?=1 DiF,(F, E 9). 

The following proposition shows how the generalised variational derivatives appear 
in a natural way in the computation of the usual variational derivative of the product of 
two functions. 

Proposition 1. 

Proof. From (3) and using Leibnitz' rule we have 

If we change the variable v by h = v - a, the conclusion follows at once. 

Given m functions p r  = pr[x ,  U ]  of g7 the first-order differential operator 

will be called the Lie-Backlund operator associated with the set of functions p = 
(,U',. . . p m ) .  This type of operator has been widely used in the analysis of the 
invariance groups of differential equations. These operators commute with the deriva- 
tion operators DOL and form a Lie algebra (see the Appendix). We note that (4) implies 
that 

The next proposition provides the commutation relations between the usual varia- 
tional derivatives and Lie-Backlund operators. 

Proposition 2. 

Proof. From (6) ,  (9) and proposition 1 we deduce that 

Then, we have only to prove that 

(-l)'"-+) s SF =+-) a SF 
su, su au, s u r  
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To do it, let us note that, given functions $' = $'(x), [a/auk, X,] = 0 and therefore 

But this implies 

This identity holds for arbitrary functions $s = @((x). Identifying coefficients of the 
derivatives De@ we obtain (1 1) and therefore the conclusion follows. 

3. Invariance groups and conservation laws 

Let w r  = wr[x, U ]  ( r  = 1, . . . , m) be m independent functions in 
the system of differential equations 

and let us consider 

wI[x, U ]  = 0. (12) 
These equations together with their differential consequences define a formal manifold 
n (Ibragimov 1976) in the space whose elements are the points with coordinates (xi, U;) 
( i  = 1 , .  . . , n ;  r = 1, . . . , m ;  laIa0);  this manifold is given by the equations 

D0lw'[x, U ]  = 0, r= I , .  . . , m, / a l s o .  (13) 
We denote by 9(a) the set of functions F E 9 which vanish on the manifold 0. Given 
F, G E 9 we shall write F A  G when F - G E $(a). In particular, we shall write F 0 
when FE  s(i-2). 

Given functions 6, ~ ' ~ 9 ( i  = 1,.  . . , n ;  r =  1 , .  . . , m), let us consider the 
infinitesimal transformation group 

xi =Xi+E&[X, u(x)], U " ( X ' )  = U r ( X ) + q r [ X ,  u(x)]. (14) 

U"(X) = Ur(X)+E/.Lr[X, u(x)], F~ = 7'- g. Du'. (15) 

To first order in the parameter E ,  the total variation of the field functions is given by 

The criterion for invariance of the system (12) with respect to the infinitesimal 
transformation group (14) is given by the condition (Ibragimov 1976, 1977) 

r = 1, . . . , m, 
i 

where 
I& =Dakr+&.DuL. 

Evidently, the condition (16) is equivalent to 

From (S), and since g. D w r A  0, we conclude that the invariance condition reduces to 
X J O ' ~  0 for all r = 1, . . . , m. We note that it depends only on the functions p r  which 
determine the total variations of the fields. Then, we may adopt the following 
definition : 
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Definition. X ,  is said to be an invariance operator for the system (12) if X,urA 0 for all 
r = 1, . . . , m. 

We now turn our attention to the conservation laws. 

Definition. By a conserved current of the system (12) we shall mean a vector function 
A = (Al,  . . . , A,)(Ai E F) such that D .  AA 0. A conservation law A will be called 
trivial if AA 0 or D .  A = 0. 

When one of the coordinates xi plays the role of time, then the time components of 
conserved currents are called conserved densities. Under appropriate decay properties 
the space integral of a conserved density becomes a constant of the motion. 

An important class of conserved currents is provided by the vector functions A for 
which there are functions p r  E 9 ( r  = 1, . . . m) verifying 

D .  A = prur .  (18) 
They are called first-kind conserved currents. From (6), we deduce that the functions 
p = ( p  , . . . , p"') associated with first-kind conserved currents are the solutions of the 
following system of equations: 

1 

S ( p S u S ) / S U r  = 0 ,  

au'lat - d [ x ,  U ]  = 0, 

r = 1 , .  . . , m. 

Let us consider evolution equations of the form 
(19) 

(20) r = 1, . . . , m, 
where [x, U ]  denotes a finite subset of the set of variables ( x i ,  U:), U: ( r  = 1 , .  . . , m ;  
la I 5 0) being arbitrary-order derivatives of the field functions with respect to the space 
coordinates x i ( i  = 1 , .  , . , n) .  For these systems of equations it is unnecessary to 
consider conserved currents depending on the time derivatives of the fields because (20) 
allows us to write this type of derivative in terms of the remaining variables. On the 
other hand, given F = F[t ,  x ,  U], we have 

d F  ~ aF aF aF 
-=- +EyDecr=- -+XgF.  
dt  at au, at 

Clearly F is a conserved density if and only if the right-hand side of (21) is a space 
divergence, but this holds if and only if 

4 (E+ x2) = 0, r = 1, . . . , m. 
su at 

In the following two sections we shall see how the identities (7), (9) and (10) can be 
used to analyse the relationship between invariance groups and conservation laws in the 
Lagragian and Hamiltonian formalism. 

4. Lagrangian formalism and Noether's transformations 

We shall consider the case in which the functions u r  coincide with the variational 
derivatives of a certain function L E 9? Then (12) reduces to an Euler-Lagrange system 
of equations 

SL/Su'= 0. (23) 
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From (19) we see that a set of functions p, = (p ' ,  . . . , p m )  is associated with a first-kind 
conserved current of (23) if and only if 

r = l  . , . . . ,  m. 
S SL 

(24) 

However, if we consider the Lie-Backlund operator X, associated with p,, then (6) and 
(9) imply that (24) is equivalent to 

S(X,L)/Gu'= 0, r =  1,.  . . , m. (25) 

If X ,  satisfies this condition we will say that it is a Noether operator. In this case p, 
defines a conserved current, which will be denoted by A,, satisfying 

D . A ,  =p,.'SL/Su'. (26) 

We note that (26) determines A, up to a divergenceless term. Conversely, given a 
first-kind conserved current A, verifying (26), then from the equivalence between (24) 
and (25) we deduce that X ,  is a Noether operator. Therefore, the solutions p, of (24) 
induce a one-to-one correspondence X ,  + A, between Noether operators and first- 
kind conserved currents defined up to a divergenceless term. The following theorem 
establishes that this correspondence is in fact a correspondence between invariance 
operators and conserved currents. 

Theorem 1. If X ,  is a Noether operator, then it is an invariance operator for the 
Euler-Lagrange equations. 

Proof. From (10) we have 

SL S S S  SL S 
S U  SU a Sue SUS Su x, 7 = 7 X,L - (-1)I"l J$ D" - 7 XJ. 

Then, the conclusion follows from (25). 

Usually Noether transformations are used in connection with the transformation 
properties of the action functional 

W [ u ;  VI = L[x, U ]  d"x 
V 

under an infinitesimal group like (14). It is easy to see that, to first order in the 
parameter E ,  

W[u' ;  V ' ]  - W [ u  ; VI = E J SL[X,  U ]  d"x, ( 2 8 )  
V 

where 

SL = D. (6L) + X,L, p ' =  q ' - t .  Du'. 

Using (9), we find the following expression for SL: 

S L  = D. Ao + p r  SL/SU', 
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where A. is determined up to a divergenceless term by the equation 

There are quite different concepts of Noether transformations in the literature. A 
common formulation (Hill 1951, Steudel 1967) is to say that (14) defines a Noether 
transformation group if there is a vector function K[x,  U ]  such that 

S L = D . K .  (32) 

In this case (30) leads to the conserved current A , ,  = K - Ao. From (29) it is clear that 
(32) is equivalent to (25). Therefore they define the same type of Noether trans- 
formations. From the equivalence between both conditions it follows that the functions 
6 must be irrelevant in the condition (32) as well as in the form of the conserved current 
At,,. In fact, if we substitute 5 by f '  and the functions p r  remain fixed, then by (29) SL is 
again a divergence D .  K' = D .  K + D .  [(t - e')L],  and we have 

D .  Ad',& = D .  AE*& = p, SLISU I .  

This shows that both conserved currents coincide up to a trivial divergenceless term 
with the first-kind conserved current associated with the Noether operator X,. Then we 
conclude that the correspondence between invariance groups and conservation laws 
which is implicit in the conventional formulation of Noether theorem is given by the 
map X ,  + A, between Noether's operators and first-kind conserved currents. 

We emphasise two aspects of our approach to Noether's theorem. First, the 
redundant function f is not used; and, second, the invariance property of Euler- 
Lagrange equations under Noether transformations has been deduced in a simple way 
without reference to the transformation properties of the action functional. 

On the other hand, the use of generalised variational derivatives permits us to obtain 
the conserved density associated with a given Noether operator. To see this, let us 
introduce the n dimensional vector basis e l  = (1, 0, . . . , 0), , . . , e ,  = (0, . . . , 0 , l ) .  We 
let 

U = D I' U I. D ~ I  = De2+",+ 

For each a let [ a ]  = a l !  . . a,! / la/! .  In the same way [ i j .  . .] = [e ,  + e ,  +. . . I .  With this 
notation, given a solution p of (24), then from (5) we find that the components of A, can 
be written in the form 

where a(x )  is a solution of D .  a ( x )  = (p ,s6L/Sus)[x,  01 and y is the curve y ( t )  = [ x ,  t u ]  
( t  E [0, 11). Another expression for A, can be deduced by means of condition (32) to 
characterise Noether operators. In this way, given a vector function K such that 
SL = D .  K, then from (30) and (31) we obtain 

This latter formula is useful for practical purposes when we are able to find the function 
K. For instance, if the Lagrangian function L does not depend explicitly on the 
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coordinates xi, then if we take 6 arbitrary and w' = U ;  we have 

SL = D .  (6L) + X,L = D .  (6L) + D'L. 

Therefore SL = D .  K where Ki = TiL + SiiL and (34)  provides the following formula for 
the conserved energy-momentum tensof: 

5. Hamiltonian formalism and canonical operators 

Let 2 be the set of functions in C" depending on n + 1 variables (t ,  x i )  (i = 1, . . . , n ) ,  
2m fields (4', IT') ( r  = 1, . . . , m )  and a finite number of arbitrary-order derivatives 
(q5:, IT:) (/a/ 3 0)  with respect to the variables xi .  Given F E  %'we consider the operator 

Clearly UF coincides with the Lie-Backlund operator X ,  where 
SFIS4') (r = 1, . . . , m). Then ( 9 )  implies that 

= (-SF/Sv', 

In what follows, UF will be called a canonical operator. The following proposition gives 
the commutation properties of canonical operators with variational derivatives. 

Proposition 3. Given F, G E 2, we have 

Proof. Since UF is the Lie-Backlund operator X ,  associated with p = (-SF/ST', 
SF/S4'), from (10) we obtain 

Identity ( 7 )  implies 

Equation (36)  leads to 

This proves (37a) .  The proof of (37b)  is similar. 



Generalised variational derivatives in field theory 697 

Given H E  Yt', let us consider a Hamiltonian system of equations 

In this case equation (21) becomes 

dF/dt @/at - U,)F. 

If we introduce the operator on Yt' 

Dt = a/at - UH, 

then the system of equations (22) for the conserved densities reduces to 

(38) 

(39) 

r =  1 , .  . . , m. (40) 
6 s 

84 ST - DrF = 7 DrF = 0, 

It is clear that if F is a spatial divergence, then it defines a trivial conserved density. 
Given FE 2f we consider the infinitesimal transformation group 

~$"(t, X )  = +'(t, X )  - E SFIST', ~ " ( t ,  x)  = ~ ' ( t ,  x)  + E SF/&$', (41) 

and its corresponding action on the Hamiltonian equations (38). Evidently the action of 
this group on the space 2 is generated by the canonical operator UF. We shall denote 
by CF the extension of UF which acts on functions depending on time derivatives of the 
fields as in the equations (38). 

Proposition 4. The operator f i F  satisfies 

Proof. We have 

U 
d SF SH SF SH 

=- -  __ -U  -9 
at ST' 6 H )  d t ( S x r )  F S T r - - $ ( $ ) + U H 7 - [ / f - *  ST ST 

From ( 3 7 6 )  we obtain 

which proves (42a). The proof of (42b) is identical. 

This proposition allows us to give a simple proof of a result due to Kumei (1978) 
which states the correspondence between invariance canonical operators and conser- 
ved densities for Hamiltonian systems in field theory. 

Theorem 2. OF is an invariance operator for Hamilton's equations if and only if F is a 
conserved density. 
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Proof. By (42a) and (42b) it is clear that GF is an invariance operator if and only if 

s - DtFn 0. 
s -DFAO, sf4 ' s d  (43) 

But the functions S(DF)/Sq5' and S(DP)/S.rr' do not depend on the time derivatives of 
the fields (4', +). Therefore (43) is equivalent to 

Then the theorem is proved. 

Since two operators cF and f iF,  are equal if and only if F -F' is a divergence term, 
theorem 2 tells us that the correspondence f iF + F is a one-to-one mapping between 
invariance canonical operators and conserved densities defined up to trivial divergence 
terms. 

We note that our derivation of theorem 2 uses only algebraic properties between 
variational derivatives and canonical operators and has been carried out within the 
context of density functions. However, in order to obtain a constant of motion from a 
given conserved density F, we must give a meaning to the space integral of F, and a space 
integral of a density function of the type of a divergence must vanish. It is required to 
impose boundary conditions for the field functions. In fact they are also necessary to 
formulate the initial-value problem of Hamilton's equations. But the property implicit 
in theorem 2 is purely algebraic and therefore its derivation does not require assump- 
tions about boundary conditions. This fact appears clearly in our approach but it is not 
obvious in Kumei's paper (1978) in which the use of functionals removes the problem 
from its algebraic context. 

6.  Concluding remarks 

In this paper several identities involving generalised variational derivatives and Lie- 
Backlund operators have been deduced which provide a new approach to conservation 
theorems in Lagrangian and Hamiltonian formalisms. In this way, it is shown that the 
correspondence between symmetries and conservation laws which is implicit in 
Noether's theorem can be derived without reference to the transformation properties of 
the action functional, and a simple proof of the fact that Noether operators are 
invariance Lie-Backlund operators for Euler-Lagrange equations is given. Moreover, 
the use of generalised variational derivatives allows us to write in a closed form the 
Noether currents arising in the case of Lagrangian densities containing higher-order 
derivatives. In Hamiltonian formalism a proof of Kumei's theorem (1978) has been 
achieved on purely algebraic considerations. Boundary conditions for field functions 
had not to be taken into account in proving this theorem. These results, together with 
those of an earlier publication (Galindo and Martinez Alonso 1978), reveal that several 
important questions of the calculus of variations admit a rigorous formulation by means 
of algebraic methods. 

Finally let us mention other possible applications of the present approach. From 
identity (lo), the system (22) which characterises the conserved densities of an 
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evolution equation can be rewritten as 

ah'  ah' 8U -+ 1 ( D u d .  -+ (-1)lU1 - I Doh') = 0 ,  
at  au: U 

(44) 

where A '  = SF/Su'(r = 1, . , . , m). This linear system of partial differential equations 
for the unknown functions A '  can be used to find conserved densities of arbitrary 
evolution equations. To illustrate briefly this method, let us consider the equation 

U1 -(UP),, = 0, (45) 

where p is a real number different from zero. For p 2 2 it describes the density of a gas 
flowing through a homogeneous porous medium (Muskat 1937). In this case (44) 
reduces to 

Let us suppose that A depends on the derivatives U,, = a'*u/axn up to a maximal order 
N 3 0. Then, if we differentiate (46) with respect to the variable U N + Z ,  we obtain 

2puP-' a A / a U N  = 0.  

aA/at +pup--' a 2 A / a X 2  = 0. 

This implies A = A (t ,  x ) ,  and (45) becomes 

Then, up to a total derivative term, the conserved densities of (45) are 

p f l :  F = (ax + b)u,  a , h E R ;  

p = l :  F = $(t, X ) U ,  +/a,$ + ax,$ = 0. 

Work is in progress to apply this kind of technique to several evolution equations of 
classical physics. 

Appendix 

We consider first-order differential operators of the form 

where q L are functions in C" in the variables xi, u;3 ( i  = 1, . . . , n ; r = 1, . . . , m ; 1p I z 0). 
Given two of these operators, X and r?, associated with functions 7: and f j ;  respec- 
tively, their commutator is given by 

This expression allows us to calculate the commutator of an operator X with the 
operator Dei of total differentiation with respect to the variable x i :  
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Therefore it is clear that the operators X which commute with the operators Dei are 
those whose associated functions 7; are of the form 7; = D a ~ i ' ,  that is, they are the 
Lie-Backlund operators. 

From (A2) we deduce that 

i.e. 

[X,, &I= xr,, 519 

[ T ,  5Ir =X,5' -mr. 
where 

Therefore Lie-Backlund operators form a Lie algebra. 
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